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TECHNICAL NOTE 3543

SOME EFFECTS OF FUSELAGE FLEXTBILITY ON
LONGITUDINAL STABILITY AND CONTROL

By Bernard B. Klawans and Harold I. Johnson
SUMMARY

Same effecits of fuselage flexibility on longitudinal stability
and control of a large airplane are defermined by application of a
semirigid analytical technique. The dynamic characteristics are examined
by studying the period and damping of the short-period longitudinal modes
of oscillation of the fuselage and airplane. The static characteristics
are examined by studying the longitudinal stability margins and the
elevator-control deflections required for balance in straight or steady
maneuvering flight.

The consideration of fuselage flexibility in the airplane studied
appears to introduce no serious problems insofar as dynamic longitudinal
stability in the subcritical speed range is concerned. It is indicated
that, if desired, future designs may incorporate somewhat more flexible
fuselages than that studied and still have dynamic longitudinal charac-
teristics approximately equal to those predicted by quasi-static theory
and roughly equivalent to those predicted by rigid—body theory.

The changes in static characteristics caused by increased fuselage
flex1b111ty appear, in general, as decreased straight-flight and increased
maneuvering-flight stability margins and increased elevator-control deflec-
tions required for balance. The need for a means of longitudinal balance
in steady maneuvering flight other than elevator Or horizontal-tail
deflection is indicated if flight is desired at low altitude and high
speed with airplanes that have fuselage natural frequencies much below
those representative of current design practice.

INTRODUCTION

Several modern high-speed airplanes incorporate structural com-
ponents that are relatively more flexible than those previously used.
There has been concern that the increased flexibility might appreciably
modify the dynamic stability characteristics as predicted by rigid-
airplane theory. (See, for example, ref. 1.) Particular concern was
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felt for the possibility of interaction between structural and stability
vibratory modes because the natural frequencies of the major structural
components are approaching the natural frequencies of the short-period
stability mode.

The problem of the effect of wing flexibility on dynamic longitu-
dinal stability of large airplanes has been treated analytically in
the subcritical speed range by a simplified semirigid method in refer-
ence 2. In the present paper, the effects of fuselage flexibility are
studied by the same method for the same class of airplanes. The major
aspects of this study include

(1) Dynamic stability as described by period and damping of the
fuselage and airplane longitudinal modes of oscillation

(2) static stability as described by longitudinal stability margins

(3) Static longitudinal control as deseribed by elevator-control
deflections required for steady straight or maneuvering flight

Tmplications of the results with regard to the design of future air-

planes of the class considered are discussed.

SYMBOLS
Cr fuselage force coefficient, positive upward
Cy, 1ift .coefficient
CLO straight-flight balance 1ift coefficient
Cm pitching-momeﬁt coefficient, positive nose upward
CmO airplane pitching-moment coefficient at zero lift
< mean aerodynamic chord, ft .
D differential operator, d/d (tl:’)
B energy, ft-1b

ET bending stiffness, lb-ft°
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— M
G recurring group of terms, 2u (ctnf )2 ﬁﬁ, which for a given
e
A

airplane and altitude varies as the square of Of g

g — acceleration due to gravity, 32.2 :t“b/'sec2

H nondimensional bending deflection at tail, hg/c

h deflection due to bending, positive downward, ft

h(x) shape of fuselage de:t‘lection curve which for this paper is

assumed to be (x/xt)

Iy moment of inertia about Y-axis, ft-1b-sec®

K longitudinal stability margin, :f'ractlon of ¢, positive
when stable

ky radius of gyration about Y-axis, E, ft

L lift, positive upward

1 tail length, ft

M mass, slugs

= an mh(x)dx, slugs
Xt

Xn
My =f mh(x)x dx, slug-ft

Mz = J: m[h(x)]gdx, slugs

Mo free-stream Mach number

m mass per running foot, slugs/ft

Q generalized force or moment
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generalized coordinate; or pitching velocity, %%

free-stream dynamic pressure, 1lb/sq ft
wing area, sq ft

time, sec

true airspeed, fps

stability coordinate axes (defined in fig. 1)

earth coordinate axes

distances along stability coordinate axes, ft

distances along earth coordinate axes, ft

nondimensional distance between 0.25c¢ and center of gravity,
¢ lengths, positive when center of gravity is rearward
of 0.25¢

angie of attack, positive nose upward, radians

elevator deflection, positive when trailing edge is
downward, radians

downwash angle, radians
angle of pitch, positive nose upward, radians

airplane relative-density coefficient, My/pS,E

density, slugs/cu £t

elevator effectiveness factor, CL8 /bL
ef %t

fuselage natural frequency, cps

w2 w2 2
effective fuselage frequency, 2nwp|l - -2 L 5
IyM3 MjMA

radians/sec
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Subscripts:
A entire airplane
cg center of gravity
effective
flexible
fuselage
£f fuselage forward of center of gravity
fr fuselage rear of center of gravity
k kinetic
n nose of airplane
P potential
R rigid
SF straight flight, flexible fuselage
SR straight flight, rigid fuselage
F turning flight, flexible fuselage
TR turning flight, rigid fuselage
t tail of airplane
typ typical current design practice
W wing
X X. stability axis

Dots are used to indicate differentiation with respect to time;

for example, & = da,
dat

The subscripts a, Ib@' qQ, H, DH, and &g indicate differentia-

tion; for example, with respect to the 1ift parameter, CIu,= gg%g

oc C, ocy, oCy, acy,

Cly, = —=,. CL, = —=2 Cryp = == Ohpy = —= and Cp, = —2.
Do~ gz’ T4 g w3 T g % 08
av 2v 2v ¢
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A1l coefficients, except those designated by suitable subscripts,

refer to the entire airplane.
ANATYSIS
Basic Considerations

Some effects of fuselage flexibility on the longitudinal character-
istics of a large airplane are examined by means of the Lagrangian
formulation of the differential equations of motion. Three degrees of
freedom are allowed: namely, angle of pitch 6, vertical displacement 2z,

and fuselage bending h. (See fig. 1.)

Assumptions.- Unless otherwise stated, the following assumptions are
made throughout the paper:

(1) The airplane forward velocity is constant.
(2) All drag forces are negligible.

(3) All 1ift forces on the fuselage are grouped in the wing
coefficients.

(4) Wing and tail mass and lift forces are concentrated at their
respective quarter-chord fuselage stations.

(5) Wing and tail are considered rigid.
(6) The fuselage is perfectly elastic.

(7) The fuselage deflects parabolically regardless of applied load
distribution. :

(8) Small classical perturbations are allowed.

Tagrangian formulation.- The Lagrangian equation within the assump-
tion made is

OF om
4a 7k : =
dt oq dq * dq < (1)

This equation requires only that the energies (both kinetic and potential)
and the generalized forces of the system under study be known.
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Energies.- Figure 1 shows that for small perturbation the vertical
displacement at any fuselage station is

2'p = z'cg - %0 + h(x)hy (2)

where
X = x' ARSIV A cos 6 =1

Differentiation with respect to time yields the vertical velocity

é'f = é'cg - x8 + h(x)ﬁt (3)

Thus, the kinetic energy of:the entire airplane is

By = J’Xn ]E-m(é'f)zdx (%)
Xy

and the potential energy is

a2 [n(x
_f mgz'y AX + = fxn [h( )ht] (5)

ax2

where the first integral represents the stored enmergy due to vertical
position and the second integral, which may be calculated according to

the method of appendix A, represents the stored energy due to the
elastic deformation.
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Generalized forces.- The generalized forces are the aerodynamic
forces on the wing and tail which, for small perturbations, may be
assumed to act vertically. The forces work when they act through a
distance. Therefore, for a displacement involving all three degrees of
freedom,

MVork = - {Azcg - X, A0 + [h(x)] wAht} Ly - (AZcg - X400 + Ahy) Ly (6)

Thus, the generalized forces for each degree of freedom are

= -Ly - Ly (7)

th = Angk = ‘El(x)] whw = Lg (9)

where the 1lift on the wing and tail, respectively, are

Ly = Or, 9% = Cr, owloSy (10)
and
Ly = Cr,, %5 = bLat“tqoSw (11)

Expressions for a  and ay, the angles of attack of the wing and tail
in terms of the three degrees of freedom allowed, are derived in appendix B.
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Equations of Motion

Four sets of differential equations of motion were used in describing
the effects of fuselage flexibility on longitudinal stability and control:
the semirigid, rigid, quasi-static, and static-balance equations.

Semirigid forms.- Performing the operation of equation (1) on equa-
tions (2) to (11) and then converting to nondimensional notation (see
ref. 2) gives the semirigid forms of the equations of motion for the three
degrees of freedom allowed: namely,

vertical force

2uD(a - 0) + 2 L D?H + ofp + D + DBCp +
My @ 2 IDg 2 Lg

l .
DHXCy, _ + - = 1
HCp + DESCL eCLae Cr, = O (12)

pitching moment

2
Y© 2 Y 2 1 1
2p —=2—-D%% - 2u —& DH - of - D8ZC, -
: a MyC Mo, 2 Mg, 27y
L =
By - DHZCm . - aecmae Cag = 0 (13)

and fuselage bending force

My M o Mz 2 1
20 L D(a - 8) - 2u —2 D2 + 2y —2 D°H + ofp + DoCm. +
b, Dl - @) - g " i, Fo © 7% Fpg

M '
1 G 1 L _

pelcy + Hfcp + Lo -c =0 14
2 Fqg (FH Vz) * DBCFpg * eCrp, ~ “1o W, (1%)
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The generalized masses (e.g., Mi) in equations (12) to (1k4) are
recurring constants and are derived and defined in appendix C. The
equations used for evaluating the aerodynamic coefficients are given in
appendix D.

Rigid forms.- A special case of the equations of motion, the famil-
iar rigid-body case, is found when the fuselage bending is zero. Equa-
tions (12) to (14) then reduce to

vertical force

2uD(a - 6) + afp_+ Dellp + DeLC,

+£8C =-C =0 15
201y * %1, ~ C1g (15)

and pitching moment

ky 2 1 1 = '

Quasi-static solution.- Another solution to the equations of motion
of general interest, called the quasi-static solution, is found when the
effects of velocity and acceleration in bending on the forces in the
system are zero. Equations (12) to (14) then reduce to

vertical force

2uD(a - 8) + ol + DO%CI@Q + D%ch + Hopy + 80y - Cr =0 (17)
e

pitching moment

(18)

It
(@

k \2 1 1 -
2“(@ / D=8 M, 2 MDq, eécmq my -5, mo
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and fuselage bending force

M M
1 2 D2 1 1
20 — D -0) - 20 —= D0 + af + Do=C + D6=Crp +
H MA (CI, ) w MAC F(L 2 FD(I, 2 Fq

M
H<CFH + —C’é-) + SeCFae - CLO M—l =0 (19)
v ,

Static-balance form.- Still another form of the semirigid equations
of motion, which describes static balance or trim of an airplane with a

flexible fuselage in steady maneuvering flight, is obtained when the rate
of change of angle of attack and the pitching acceleration as well as the

velocity and acceleration in bending are all set equal to zero. Equa-
tions (12) to (1%) then reduce to

vertical force

-2uD8 + ol + Dt%clq + HOpy + 8Crg = Cpy = O (20)
e

pitching moment

Lad - l - —-— - = = )
g, = DO, BCmg = BeCmg, = Cmp = 0 = Cy (21)

and fuselage bending force

-2uD8 M_A + aCFm + DGECFq + H(Cpg + ;é + SeCFae - CIg m =0 (22)

Equations (20) to (22) describe the static balance or trim of an
airplane with a flexible fuselage in steady straight flight if all the
terms involving D6 are deleted.
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Dynamic Longitudinal Stability

An exponential solution to the equations of motion was assumed. If
such a solution exists, the determinant of the coefficients must vanish.
This determinant when written as an equation yields what is commonly
called the characteristic equation of the system. The roots of the
operator D contained in the characteristic equation determine the period
and the time to damp of the various modes of motion in the system under
study if the mode is oscillatory or simply the rate of convergence or
divergence if the mode is nonoscillatory. '

The foregoing procedure is described in detail in reference 3 and in
other literature and was used herein to determine the dynamic longitudinal
stability characteristics of the semirigid, rigid, and quasi-static air-
plane systems considered.

Static Longitudinal Stability and Control

The effects of fuselage flexibility on the static longitudinal sta-
bility and control are examined by comparing the classic straight-flight
and maneuvering-flight stability margins and elevator angles necessary
for balance for rigid airplanes with those for airplanes in which fuse-
lage bending occurs.

Stability margins.- The straight-flight stability margin is defined
herein as the longitudinal distance expressed as a fraction of the length
of the wing aerodynamic chord between the center of gravity and the point
at which the lift associated with incremental 1ift coefficient acts;l the
incremental 1ift coefficient is produced by an infinitesimal change in
steady forward flight speed along a straight and level flight path with
controls fixed in the position required for balance at the particular
initial speed under consideration. When expressed analytically, the
straight-flight stability margin is

3, fov

KS = - aCLO/aV (25)

The static-balance equations (20) to (22) may be differentiated with
respect to velocity to obtain BCm/BV and BCL/BV where the piteching

1Tt should be noted that this point is not necessarily a fixed point
on the airframe in the case of a flexible airplane but, rather, is depen-
dent on center-of-gravity location and stiffness characteristics.
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velocity D6 may be neglected in level unaccelerated flight. Substitu-
tion of these values into equation (23) yields the straight-flight sta-
bility margin for an airplane with a flexible fuselage as

Cp. -G Cr., & \C
e, Lo
Kop = V2 + {1+ ve G CmO
CLHCF - CL CFH - CL(I, V2 CLHCF CLC(.CFH - CL # LO

(2k)

which, for infinite stiffness (G = »), reduces to the well-known rigid-
body straight-flight stability margin

C

EE; (25)

KSR=_

The maneuvering-flight stability margin is herein defined as the
longitudinal distance expressed as a fraction of the length of the wing
mean aerodynamic chord between the center of gravity and the point at
which the 1ift associated with incremental 1ift coefficient acts; the
incremental 1ift coefficient is produced by an infinitesimal change in
steady angle of attack at constant forward velocity with controls fixed
in the position required for either the initial straight or the initial
steady curvilinear flight path at the flight speed under consideration.
When expressed analytically, the maneuvering-flight stability margin is

’

3C,, [3a. (26)

SRy

The static-balance equations (20) to (22) may be differentiated with
respect to angle of attack o to determine the solution of the mareuvering-
flight stability margin Ky as defined by equation (26). For an airplane
with a flexible fuselage, Kg becomes
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My G

—(Cy C -C,C -CpC,. +C,.Ch_+C, ==

_ MA( Lo g T, LH) Fo g Ty, Ty Ty, y2

Kp = - _ G B
CLHCFC(, CLa,CFH ‘L V2

24

%(%:CLqua - %Cchla)

. (21)
C: C - C - =
2”( Ly Fa, CLC(. Fg CLcc, V2)

which, for infinite stiffness (G = »), reduces to the well-known rigid-
body maneuvering-flight stability margin

1 1

—éch §cmq ( 28)

Kggp = Kgg|1 - 5n | T on

The stability margins presented herein for airplanes with flexible
fuselages represent real stability rather than apparent stability which
normally is measured directly in flight tests from the variation of
elevator angle with speed or acceleration. In this connection it should
be noted that, for an airplane with a flexible fuselage, some of the
change in elevator angle needed to change speed or acceleration is
absorbed by fuselage deflection so that the elevator deflection measured
in flight tests cannot, in general, be used as a measure of real stability.

Elevator-control characteristics in straight and steady maneuvering
flight.- The static-balance equations (20) to (22) may be solved for

elevator angle necessary for balance in level 1g flight where the pitching
velocity D8 is O. Thus, for an airplane with a flexible fuselage,

Ml i G
E@ich%;hnﬁ - CmupLH> - CF Cmg + Cm OFg + Cmg, Gé]CLO
Bonr = -
SF o (e c. lt\e
Lo\ Mo~ Lo T )y2

- _op &
(erar - Onglra - Oy )omo

o (29)
t

c Cc, - Cp —=l=

Lae(ma Lo E>V2
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which, for infinite stiffness (G = =), reduces to

C.C + Cy C
Ty, LO ch, To

Oegg = ”
Cie, <cm - o —c_—>

(30)

(¢4 @

The elevator-angle increment necessary to achieve steady flight
different from lg is obtained from the static-balance equations (20) to

(22) for Do % O with all lg terms neglected. Thus, for an airplane
with a flexible fuselage,

¢ (L _l c
DBF(ECIQ% -éCquu)
: (31)
£\ G
CL8 (Fma - CL@ 17>§§
which, for infinite stiffness (G = »), reduces to
C, 2uD8 - Do|=C - 20, C
m 2HDO - DB\ LCmg, = SmgCLq,
S (32)

°mR - cr |[c ¢ Lt
' L6e M _La c

It should be noted that any discussion pertinent to the effects of
zero-lift pitching moment CmO on static stability or control is based

on the assumption that the wing and tail are rigid.
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NUMERTICAL CONSTANTS

Several constants were chosen to identify the study with a typical
current large airplane:

Iy, 2 l.12 X 106 1b-ft-sec? Cy, = 4.927 per radian
A
Qs
CLat = 0.802 per radian (based on wing area) T =0.5 %i = 0.45
wp = 2.72 cps ¢ =13 ft © 8, = 1,428 sq ft

The dimensions and mass distribution shown in appendix C were
selected such that (1) the moment of inertia of the assumed airplane
approximated 1.12 X 10 1b-ft-sec2 over the center-of-gravity range
investigated (0.25¢ to 0.544E), and (2) the mass distribution was
describable analytically. This second criterion reduced the evaluation
of the mass integrals from a tedious graphical method to one in which
the values are determined by expressions obtained from simple analyti-
cal integrations. (See appendix C.)

RESULTS AND DISCUSSION
The effect of fuselage flexibility on the characteristics of a

bomber airplane is discussed with regard to

(1) Dynamic stability as described by period and damping of the
fuselage and airplane longitudinal modes of oscillation

(2) Static stability as described by longitudinal stability margins
(3) Static longitudinal control as described by elevator-control
deflections needed in steady straight or maneuvering flight
Period and Damping

Aerodynamic coefficients, mass distributions, and a range of center-
of -gravity positions were chosen to represent a current high-speed bomber
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airplane. These values, shown in table I, were substituted into equa-
tions (12) to (19) to determine period and damping of the airplane and
fuselage modes of oscillation at altitudes of 8,000 and 30,000 feet.

(See ref. 3 for the method.) The results are summarized in figure 2

over the entire possible fuselage natural-frequency range at a Mach
number of 0.7. Figure 3 summarizes the period and damping of the airplane
mode as a function of dynamic pressure for a center-of-gravity location
at 0.25¢ for four representative fuselage natural frequencies. The fre-
quencies selected were (1) wp = « or rigid body, (2) aftyp = 2.72 cps

or typical, current bomber practice, (3) wp = 1.36 cps or one-half the
frequency of aYt , and (&) wp = 0 or completely flexible body.
P

Rigid-body solution.- The rigid-body characteristics as obtained from
equations (15) and (16) may be identified in the figures as those at
wp = o, In figure 2, the center-of-gravity location appears to have little

effect on the time to damp but causes large changes in the period of
oscillation. The increase in period with rearward movement of the center
of gravity is caused by the decrease in restoring pitching moments asso-
ciated with the reduced stability margins. When the center of gravity is
at the static neutral point (0.544C), the motion consists of two aperiodic
modes, both of which have positive damping.

Airplane mode of the semirigid body.- The airplane short-pericd mode

of oscillation appears to have reduced damping as the fuselage becomes
more flexible. This is probably caused by the reduced tail rotary damping
which becomes zero at wp = O. However, the airplane mode is still damped

at W = 0 because the vertical motion of the wing and fuselage supplies

damping of the plunging motion involved in the short-period oscillation.
Because of the assumptions made in the analysis, the wing motion contri-
butes no rotary damping when the center of gravity is at 0.25¢ and wp =0

but, as the center of gravity moves rearward, some rotary damping due to

the wing is probably introduced and may account for the increased damping
shown by figure 2.

The decrease in period of the airplane mode with increasing fuselage
flexibility is believed to be due to an apparent forward movement of the
effective center of gravity as the fuselage becomes more flexible. When
the fuselage becomes completely flexible, the airplane probably tends to
behave like two "tailless" airplanes hinged together flying in tandem.
Each tailless airplane of the combination would have a relatively large
stability margin and much smaller moment of inertia than the original
airplane. It might be expected that the airplane mode characteristics
would be determined mostly by the largest and heaviest tailless airplane,
which would consist of most of the fuselage and the wing of the original
conventional airplane.
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Fuselage mode of the semirigid body.- Inclusion of a third degree

of freedom, that of fuselage flexibility, introduces a new mode of oscil-
lation. This mode represents the motion the flexible fuselage would
assume. Although not shown in figure 2, the period of the rigid fuse-
lage (Qf = m) is zero because the structural restoring forces are infinite.

As the fuselage natural frequency wy decreases, the structural restoring
forces decrease and disappear at wp = O. Existence of a fuselage oscil-

lation at wp =0 (see fig. 2) therefore indicates that a restoring force
still exists that may be attributed to the air forces present.

Also, although not shown in figure 2, the time for the fuselage
oscillation to damp to 0.1 amplitude for wp = « would be infinite because

structural damping is not considered, and the effect of air damping would
be negligible in comparison with the infinite structural restoring forces.
As wp decreases, air damping becomes important and causes a gradual

increase in damping as shown in figure 2. At wp = O, the damping as well

as the period of the fuselage oscillation is determined entirely by the
air forces.

~

Quasi-static solution.- Characteristics based on equations (1T7) to

(19), wherein the effects of velocity and acceleration due to bending on
the forces of the system are neglected, are much more readily obtained
than the semirigid solutions since the characteristic eguation is reduced
from the fourth to the second order. Agreement between the two solutions
appears to be excellent (see fig. 2) except for exceedingly low fuselage
natural frequencies for which the quasi-static method predicts” too much
damping.

Effect of altitude.- The rigid-body characteristics indicate that

both the period and the time to damp to 0.1 amplitude increase with alti-
tude at constant Mach number (fig. 2). This increase is due to the
increased ratio between the airplane mass forces and the aerodynamic
restoring and damping forces which is brought about by a reduction in
dynamic pressure at the higher altitudes.

The period of oscillation is essentially independent of altitude at
any given dynamic pressure (fig. 3). However, the time to damp to 0.1
amplitude at a given dynamic pressure increases with altitude because the
increase in true speed leads to smaller tail and wing angles of attack
because of pitching velocity and, hence, smaller rotary damping moments.
The inclusion of flexibility does not seem to alter these basic trends.

Significance of flexibility.- It is apparent from either figure 2 or

figure 3 that fuselage flexibilities associated with natural frequencies
above the order of 1 cps do not markedly change the period of damping from
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that expected with a rigid fuselage. Thus, within the framework of the
present analysis, designers may possibly incorporate fuselages with

appreciably lower natural frequencies than that of the typical fuselage
chosen (2.72 cps) without great concern as to the adverse effects on the
dynamic longitudinal stability characteristics of the proposed airplane.

However, when the period of the short-period oscillation approaches
that of the fuselage mode which occurs in flight as wp—>0, there is some

evidence of adverse interaction between structural and stability modes.
This adverse interaction is indicated by the rapid increase in time to
damp to 0.1 amplitude as wp—>0 shown by the results obtained with the

semirigid method. It should be noted that the quasi-static method, which
does not admit the existence of a fuselage oscillation, does not show a
corresponding rapid increase in time to damp to 0.l amplitude as we—>0.

The aerodynamic restoring forces which act on an airplane, as
pointed out previously, are indicated to be sufficient to increase the
frequency of the fuselage mode in flight so that the latter frequency
is always higher than either the fuselage ground structural frequency
or the airplane-stability natural frequency. Therefore, the probability
of instability associated with proximity of the frequencies of the fuse-

-lage and airplane modes is minimized; in the present case, indeed, there
was no indication of instability due to interaction between the two
modes.

Longitudinal Stability Margins

Straight- and maneuvering-flight stability margins were calculated
according to equations (24) and (27) and are presented in figures 4 and
5, respectively. The results are given as the ratio of the stability
margin of an airplane flying at a Mach number of 0.7 at 8,000 and
30,000 feet with a flexible fuselage to the stability margin of this
airplane operating under identical conditions but with a rigid body.

Straight flight.- The straight-flight stability margin of an air-
plane that has zero pitching moment at zero 1lift (Cmo = O) is reduced

.as fuselage flexibility is increased and, in fact, becomes zero for

an airplane with an infinitely flexible fuselage. (See fig. 4.) Center-
of-gravity location over the range investigated has little if any effect
on the stability-margin ratio at a given fuselage freguency.

However, the situation is markedly changed when there is a finite
pitching moment about the wing quarter chord at zero 1lift (Qmo % O).
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For a value of Cmo given by

cmo=-§-n'éclo
L(I:

the stability margin for a flexible fuselage remains constant over the
entire range of flexibility from an infinitely rigid to an infinitely
flexible body. Any value of CmO above this shows an increased stabil-

ity margin with increasing flexibility, and, .conversely, any value below
this shows a decrease in stability margin with increased flexibility.

The center-of-gravity location has an effect on the degrees of sta-
bility increase or decrease when CmO % 0. When the center of gravity is

at the rigid-airplane neutral point, the ratio of stability margins is,
of course, infinite (either positively or negatively depending on the
sign of Cmo) with respect to the rigid-body margin. At more forward

center-of-gravity locations, the ratio of stability margins approaches
the values for CmO = 0. Therefore, it is seen that the importance of

a given value of Cmo is inversely proportional to the initial rigid-

airplane stability margin.

Increasing altitude at constant Mach number reduces the effects of
flexibility on the static margins for any airplane configuration. This
effect is believed to be solely due to the relative reduction in air
forces compared with the structural forces because of the reduced dynamic
pressure at any constant Mach number that occurs with increasing altitude.

Maneuvering flight.- As the fuselage becomes flexible (ay——éO), the

maneuvering-flight stability margin shows a marked increase over the
rigid-body values. Although not readily seen from figure 5, the increased
margins amount to about 20 percent chord over the center-of-gravity range
investigated at wp = O. The increase in maneuvering-flight stability

margin ratio with increased altitude probably stems from the reduction in
rigid-airplane stability margin which normally occurs with increasing
altitude and is associated with reduced damping in pitch. Because the
turning-flight stability margins involve no change in speed, the zero-
1ift pitching-moment coefficient Cmo has no effect on these margins even

when flexibility is considered.
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Significance of flexibility.- The conclusion often reached is that
increasing the flexibility of a fuselage will always result in decreased
stability margins because of the tendency of the tail to stream with the
relative wind and thereby produce less 1lift than the same tail on a
rigid fuselage. Such an effect is apparently predominant when straight-
flight stability margins are considered. However, although such a
streaming tendency exists in steady maneuvering flight, the present analy-
sis indicates that the effect of normal acceleration on the distributed
fuselage mass for airplanes with conventional tails causes both ends of
the fuselage to deflect downward sufficiently such that the tail- of the
flexible airplane produces more 1ift than that of the rigid airplane.

The resulting increase in tail 1ift draws the centroid of the total air-

plane 1ift rearward which is synonomous with increased stability margin.

Thus, although the straight-flight stability margin goes to zero

(for Cmo = O) as the fuselage flexibility is increased, the maneuvering-

flight stability margin is increased.

For flexible airplanes, the problem of straight-flight stability
margin may be minimized through careful design practice. Advantage can
be taken of the situation when

C
= - Za
mo =~ & %o
87

If the wing sections are selected such that this equation is obeyed at
the design speed and altitude condition, flexibility will have no effect
and the airplane will have the same stability it would have if it had a
rigid fuselage. As the airplane operates off the design-speed conditions,
the effects of fuselage flexibility become important.

Except for large negative values of Cmo, which in most cases can be

avoided in airplane design, the effects of the inclusion of fuselage-
flexibility effects on current airplane design (mftyp = 2.72 cpé) with

regard to stability margins are either negligible or beneficial in both
straight and maneuvering flight. Indeed, from figures 4 and 5, designers
may expect to use fuselage natural frequencies appreciably less than is
the current practice without expecting very large differences.

Elevator-Control Motion

The elevator angles necessary for balance in either straight or
maneuvering flight were calculated according to equations (29) and (31)
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and are presented in figures 6 and T, respectively. In the case of
straight flight, the elevator angles necessary for balance are given as
absolute values. In the case of maneuvering flight, elevator-angle
increments necessary for balance at any given normal acceleration dif-
ferent from 1l g are given as the ratio of the elevator-angle increment
required for an airplane with a flexible fuselage to the elevator-angle
increment required for an airplane with a rigid body. In every case,
the airplane is flying at a Mach number of 0.7 and at either 8,000- or
30,000-foot altitudes.

Rigid-body control.- The elevator angles at wp = @ 1in figure 6

represent those expected from a rigid airplane of the assumed geometry.
The static stick-fixed neutral point occurs when &, = O for Cmo =0

which is at the center-of-gravity location of 0.544c. In this condition,
a positive lift necessary for balance is generated on the entire tail
wvhen the rigid airplane is at an angle of attack. As the center of
gravity moves forward, less tail 1lift is required for balance. This is
achieved by increasing up-elevator (negative) angle as may be seen in
figure 6. When the center of gravity reaches the wing quarter-chord
position, the up-elevator angle required is just sufficient to eliminate
completely all 1ift on the horizontal tail for the configuration which
has no zero-lift pitching moments or distributed fuselage 1lift. Of
course, positive Cmo causes a down-elevator angle necessary for balance

and negative Cmo causes an up-elevator angle necessary for balance with

respect to that required when CmO = O.

Straight-flight control of flexible fuselage.- The elevator angle
necessary for balance in straight flight for Cmo = 0 becomes increasingly

negative (trailing edge up) as fuselage flexibility is increased and, in
fact, becomes infinite for an airplane with an infinitely flexible fuse-
lage. (See fig. 6.) However, when zero-lift pitching moments are con-
sidered, it can be shown that fuselage flexibility has no effect on the
elevator angle necessary for balance when

My
==(Cy, Cp - Cp Cp_ )+ Cy Cp_ - Cp Cp_|C
_ [MA(La b B LH) By, Fg ~ Fo mH] Lo

0] Cr C -C+ C
LH Fa La FH

More positive values of Cmo require an increasing positive elevator

angle until as wp—>0 the elevator angle necessary for balance becomes
infinite. Conversely, for more negative values of C, , the elevator

angle necessary for balance becomes infinite in the opposite direction.
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Increasing altitude requires increased up-elevator angles necessary
for balance. This is probably due primarily to the reduced dynamic pres-
sure which requires that the airplane be flown at higher 1ift coefficients
at high altitudes. )

Maneuvering-flight control of flexible fuselage.- The maneuvering-
flight elevator-angle-increment ratio necessary for balance for an
airplane with a flexible fuselage increases as fuselage flexibility is
increased and becomes infinite for an airplane with an infinitely flexible
fuselage. (See fig. 7.)

Significance of flexibility.- The deflection curve which a flexible

fuselage assumes depends on the distribution of applied aerodynamic loads,
the mass distribution, and the stiffness distribution. In normal flight,
that is, with the center of gravity at or near 0.25C, the air load
required on the horizontal tail for balance in straight flight is zero if
Cmo = 0. Under these conditions, the fuselage may be thought of as a long

flexible beam having distributed mass which is supported by a single con-
centrated 1ift force supplied somewhere near the middle of the beam. The
result is that both ends of the fuselage will droop, and it is apparent
that increasing up elevator will be required to preserve balance as the
fuselage increases in flexibility. When the center of gravity is moved
rearward from 0.25¢, up tail loads are needed for balance. If the up

tail load for balance exceeds the weight of the tail assembly (which
occurs for the airplane studied when the center of gravity is about 0.32¢),
the fuselage deflection curve begins to have an inflection point at the
rear end which moves forward with further rearward movement of the center
of gravity. Therefore, the assumption of a simple deflection curve such
as the parabola becomes less satisfactory as the center of gravity
approaches the neutral point. However, it is apparent from the foregoing
discussion that the assumption of a parabolic deflection curve is at least
qualitatively realistic and should allow some idea to be gained in regard
to the onset of serious trim problems.

The increases in elevator angle compared with those required for a
rigid body (wf = w) are not marked for the design studied Cth = 2.72 cps)
yP

for normal center-of-gravity locations (approximately 0.255) for the air-
plane in level flight at both 8,000 and 30,000 feet and also for the air-
plane at 30,000 feet in maneuvering flight. In fact, from figures 6

and 7 it appears that designers can reduce appreciably current fuselage
structural frequencies before any serious elevator-control balance prob-
lems will be expected to occur. However, the elevator-control balance
problem in low-altitude high-speed flight (Mg 2 0.70) appears in figure T
to be becoming serious for current airplanes in maneuvering flight and
will probably become intolerable for more flexible designs. If high-speed
flight becomes necessary at low altitudes for airplanes having fuselage

e e e et € S e T . e AN < e i i gt treeopt et et i e et . e ot ettt et e
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natural frequencies much below those of present-day practice, some means
other than elevator or stabilizer control may become necessary to balance
the airplane longitudinally in maneuvering flight.

It is interesting to note from figure 6 or figure 7 that the eleva-
tor is, in general, completely incapable of balancing the airplane with a
completely flexible fuselage in either straight or turning flight. Thus,
any discussions of static stability for fuselage stiffness very close to
zero are primarily of academic interest.

- CONCLUDING REMARKS

The consideration of fuselage flexibility in a current large high-
speed airplane design appears to introduce no serious problems insofax
as dynanmic longitudinal stability in the subceritical speed range is con-
cerned. It is indicated that, if desired, fubure designs may incorporste
fuselages with natural frequencies appreciably less than that studied and
still have dynmamic longitudinal characteristics approximately equal to
those predicted by quasi-static theory and roughly equivalent to those
predicted by rigid-body theory.

The aerodynamic restoring forces which act on the airplane are
sufficient to increase the frequency of the fuselage oscillatory mode in
flight so that the latter frequency is always higher than either the
fuselage ground structural frequency or the airplane-stability natural
frequency. Thus, the occurrence of a resonant condition is avoided.

The changes in static characteristics caused by increased fuselage
flexibility, in general, appear as decreased straight-flight and increased
maneuvering-flight stability margins and increased elevator-control
deflections required for balance. The need for a means of longitudinal
balance in steady maneuvering flight other than elevator or horizontal-
tail deflection is indicated if flight is desired at low altitude and
high speed with airplanes that have fuselage natural frequen01es much
below those representative of current design practice.

Langley Aeronautical Laboratory,
National Advisory Committee for Aeronautics,
Langley Field, Va., August 23, 1955.
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APPENDIX A

CALCULATION OF POTENTTAL STRAIN ENERGY

Nodal line

The potential strain energy is derived in terms of the maximum
kinetic energy of a harmonically vibrating free-free beam (the fuselage).
Mathematically, this equality can be expressed as maximum potentlal strain
energy equal to maximum kinetic energy or

(A1)

L [ EI —___dz[h(x)ht] 2@x = w—f—g'fxn
2 th o2 2 |,

The problem then is to express zp 1in known terms.

The vertical displacement and acceleration of any fuselage station
may be expressed as

Zp = Zeg - X0 + h(x)hy A (A2)
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and
Zp = Ebg - %6 + h(x)hy (A3)

It is a necessary condition that the external vertical force and pitching
moments of a free-free beam be zero at all times. Hence,

fxnmifdxgo='z'c p + By (a4)
Xt
and

Xt

Solving equations (AL) and (A5) for Ecg and 6, respectively, in terms
of hy wyields

My ..
ch-_ﬁi-ht
> (A6)
_-_2..
6 _th,C

or, combining equations (A3) and (A6) gives

rp = ht[— ffi - 1_32{' X + h(x)} (AT)
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Under the assumption of sinusoidal motion it can be shown easily that

Ef = -a&zzf (a8)
and
e '2
hy = -wehy (49)
so that equation (A7) becomes
M M
zp = ht[- L_2x. h(x)} (A10)
My Iy

Equation (A10) then is an expression for zg¢ in known terms. Sub-

stitution of equation (Al0) into equation (Al) and simplifying yields the
potential strain energy expressed as

2
X a2ln 2 2 2
lf 0o _[(ﬁh_d dx = ﬁ.\f_MBthQ_ _ I_ﬂ - M_2> (A11)

2 2 2
X¢ ax




o8 NACA TN 3543
APPENDIX B
DERIVATIONS OF TATL AND WING ANGLES OF ATTACK

For a rigid airplane, the wing angle of attack is

= q - Bl
Oz = Y (B1)
and the tail angle of attack is
%Rw_ie.'@mﬁ)_ﬁé (B2)
do v v

For the flexible airplane, o, and ag are modified because of
fuselage bending displacement and. velocity; consequently,

aln(x) h(x)E
oy = g + —[—%t]— . + [ xvht]x=xw (B3)
and
d[h(x)h_t] n(x)hy
“p T g T YT ax — N [—_V_—L_xt (B4)

For the assumed parabolic fuselage deflection under load,

Xt

n(x) = (i)a (85)
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so that

a[n(x)] _ 2x

(B6)
2
dx xt

Substitution of equations (Bl) into (B3) and (B2) into (B%) and
nondimensionalizing gives, respectively,

- 2
Xy 2%y g (XW)
=q-—2D9 - —2 E H4+(X)DH B
and
a,t=a,-g*—€-a.+Dcc}—i3)—-}-c;°-De—2H-§-+DH (B8)
o, c ] Xt '

Equations (B7) and (B8) are used herein to describe the angles of
attack of the wing and tail for the several degrees of freedom allowed.

i
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APPENDIX C
DERIVATION OF GENERALIZED MASSES

The assumed loading for the airplane under consideration may be
pictured as

Tw
My
mpr
nep
: ) !
<«— 51.3 13% — 46.5 - 13X ————>
< 7 97.8 >
=0

where all distances shown are in feet and

¢ =13 ft
M, = 3,882 slugs (125,000 1b)
M, = 1,273 slugs (41,000 1b)

Mp + My =My - M, = 2,609 slugs

My = 621 slugs

Mf = Mff + Mi‘r = 1,988 slugs
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and where, for the assumed fuselage geometry

bution in slugs,

The mass per running

and

Mpy
for
and

Mpp = 1,299 - 870%

foot is
Xn - X
= Mpp ——s (for
*n
-Xy + X
= Mp, —E—— (for
.2
t

%y = 51.3 + 13%

xy = -46.5 + 13%

Proceeding to the mass integrals gives

mh(x)dx
X4,

31

and triangular load distri-

x =0) (C1)
= x¢) (C2)
(c3)

(ck)

(c5)
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Combining equations (Cl) to (C5) yields

=t£:512Mff Xn%:2%¢§ifdx + chﬁgx: +

2 2

—Xt+x_x x
oM, _—_—_E—CEE) ax + Mt(iz)

X.t, X=Xt

When the integrations have been performed,

M 2 2
Ml gf(if:) + MW(;w—t) + M—:él + Mt

Similarly,

t

Mp = ¥§£(§n> Xp + Mw( ) Mfr Xy + MXy

and

L L v ,
") ) B

(c6)

(c7)

(c8)

(c9)

Equations (C7) to (C9) are used to evaluate the mass irtegrals over the

center-of-gravity range of the investigation.

H
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APPENDIX D
EQUATIONS FOR EVALUATING THE AERODYNAMIC PARAMETERS

The aerodynamic parameters in the general case may be expressed as

£ (1) = (), * () Ty

f(n)C X

- *u *t
me(n) ~ We(n) Lo, T * “be(n) o, T

x,\2
f(n)CFf(n) = awf(n)CLaw(X_t) + %f(n)CLa,t

For example, the airplane lift-curve slope CLuR the damping in
pitch %Cmq; and the bending-force coefficient due to velocity in

bending %CFDH are expressed, respectively, as

w)
¥
i
&
D
n¢§
~
Q

(g
=
|
w]
D
T
oq
~
Q
=
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TABLE I.- CONSTANTS USED IN NUMERICAT, SOLUTIONS

[Two values of p were used:

223.9 and

470.7, corresponding to altitudes of
8,000 and 30,000 feet, respectively]

35

Values of parameter for
Parameter center-of-gravity locations of -
' 0.258 0.358 0.45¢8 0.544&

MifMg . . ... . 0.1375 0.1441 0.1510 0.1580
(kY/E)2 ...... 1.762 1.736 1.710 1.685
MpfMp€ . . ... -.01117 -.00377 .00376 .01148
1~/13/MA ...... .07056 .07T18 .08433 .09180
CL, » « + » = » - - 5.%68 5.368 5.368 5.3%68
%CLDG' ....... 1.292 1.256 1.220 1.186
%ch ....... 2.871 2.298 1.725 1.185
Crgg e ¢ v v v o o - RIT. 3797 .3021 .2197
1
Krpg =+ + + - - - .8021 .8062 .8193 .8416
R .ko10 1010 4010 -%010

e
Cmy, + v v v o v - -1.579 -1.042 -.5060 0
%cmDm ....... N “4.370 -4.123 -3.896.
%cmq ....... -10.280 -9.758 -9.356 -9.082
Cragg » = =+ =« » - -1.604 -1.612 -1.639 -1.683
g -5.135 ~5.055 2.912 | -2.888
Cma ....... -1.865 -1.813 -1.762 -1.712

e
Cp_ « v v RRPY 53 58k 4807
%CFDOL ....... 1.292 1.256 1.220 1.186
%ch ....... 2.871L 2.790 2.707 2.623
Cpy o = v o v v - 482 4610 L7h 4862
S .8021 .8062 .8194 .8h1
CFpg ? 49
CRg  + « « « = « - 1010 1010 1010 1010

e
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(2) Altitude, 8,000 feet. (b) Altitude, 30,000 feet.

Figure 3.- Semirigid solution for period and damping of short-period
longitudinal mode of a large airplane as & function of dymamic
pressure for various fuselage natural frequencies. Airplane center
of gravity, 0.25c.
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(a) Altitude, 8,000 feet. (b) Altitude, 30,000 feet.

Figure 6.- Variation of elevator angle necessary for balance in straight
flight with fuselage natural frequency for a large airplane at several
airplane center-of-gravity locations. Mach nugber, 0.7; rigid-body
values at wp = . ~
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